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ABSTRACT

50\

This report documents the results of investigations into the

&
gfelative transport capabilities of chemically-fueled upper stages using

cryogenic and storable propellant combinatioﬂ%, these stages being de-
o

e

signed to meet the same space mission objéctives in a near optimum
manner.

A terminal maneuver after a coast period characterizes the missions
forming the basis of comparative evaluations. Various stage weights,
propellant combinations, space storage methods, and thermal insulation

systems are considered.

Qrethur D Little, Inc.
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I. SUMMARY

A, PURPOSE AND SCOPE

The major purpose of this work is to utilize the most recent
knowledge in cryogenic technology in application to upper stage space
vehicles using cryogenic propellants in order to better define the
transport capabilities of these vehicles compared with those using
space storable propellants in a mission spectrum representative of
NASA's future programs.

The major criterion for comparative evaluation is the deliverable
payload. A terminal maneuver after a coast period characterizes the
missions considered. The mission spectrum of interest include the
lunar, solar, Mercury, Venus, Mars, and Jupiter probe. The liquid

propellant combinations considered are:

1) H, -0,
2) H,-F,
3) CH, - OF,
4) H, - OF,

5) N,H, - N0,
6) A50 - N,0,

7 BZH6 - OF2
The size of the stages considered in our evaluation range from

6000 to 40,000 pounds at departure from earth orbit. The weight pen-
alties associated with various space storage methods and thermal in-

sulation systems for the cryogenic propellants as based on the state-

of-the-art technology and foreseeable extensions of that art are in-
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vestigated as part of this study. In addition, special operational and
technological problems associated with the application of specific
propellant combinations are discussed.

B. CONCLUSIONS

The transport capabilities of upper stage space vehicles using
high energy cryogenic propellants should exceed those using earth
storable propellants in a number of missions within the spectrum of
NASA's interest, The weight penalties imposed by the need for thermal
protection of the cryogenic tankage due losses through boil-off (if any)
depend on the mission requirement and on the propellant combination,
but in a preponderance of cases investigated they are not so great as to
obviate the basic payload advantage attendant to the use of high specific
impulse propellant combinations.

In all cases investigated, the use of hydrogen-fluorine or diborane-
oxygen difluoride resulted in the largest payloads, and, with very few
exceptions, where one promised the greater transport capability the other
was next in rank order. The superior specific impulse given by the hy-
drogen-fluorine propellant combination is responsible for its position.
An excellent specific impulse, a relatively high density storage, and
a relatively good space storability are qualities which account for the
promise shown by the diborane-oxygen difluoride combination.

In the greatest majority of cases investigated, use of a fully
mixed, non-vented space storage of the cryogenic propellants led to a
greater deliverable payload than resulted from vented storage. For

this reason, the trade-offs between increased payload and the more

Aethur D ALittle, Ine.




cumbersome and expensive ground-handling equipments and procedures and
necessary mixing devices associated with the non-vented storage method
deserves further attention.

No substantive investigation of the problems inherent to the
handling of hydrogen-fluorine or diborane-oxygen difluoride propellants
has been made. We note the technology of handling hydrogen-fluorine
is much further advanced, but fuller knowledge of the handling problems
are required in the interpretation of the results presented.

There is no current practice for thermally protecting space-borne
cryogenic propellant tankage. The methods of thermal protection and the
weight penalties associated with them that are factored into this study
are based on current developments in this area and reflect their logical

culmination.
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II. METHODS

A. BASIS

The present study is aimed at determining, for various propellant
combinations, the payload mass delivered in various missions by an
upper stage having a given mass at earth escape. The payload mass is
herein defined as that remaining after the masses of components nec-
essary for the mission are deducted from the earth escape mass (or gross
mass) of the upper stage vehicle,

The mission begins at earth escape, continues through the coast
period, and ends in a terminal maneuver. The terminal maneuver requires
propellant and the associated hardware: tankage, engine assembly,
pressurization and expulsion systems, and thrust structure. The thermal
environment during groundhold, earth ascent and coast impose the need of
thermal protection for propellant tankage, particularly in the case of
cryogenic fluids. Earth ascent thrust and moments impose structural
requirements that are more severe than those associated with terminal
thrust, and usually control in the design of the upper stage structure.

For the purpose of thé study, the mission is typified by: a coast
period, Qfo; a time integral of solar flux intensity, I'YO; and a ter-
minal velocity increment, AV.

The vehicle is typified by its earth escape mass, or gross mass,

M

o> and its configuration. The configuration used consistently as a

reference in our study is shown in Figure 1.

QArthur D.Little, Ine.
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Since the effect of choice of propellant combination is to be in-
vestigated, the propellant cannot be characterized realistically by
one or two simple parameters., Rather, each propellant combination must
be considered in terms of its own properties (optimum oxidizer-to-fuel
ratio O/F and the corresponding specific impulse Isp’ relationship
between density and other thermodynamic properties, normal boiling
point, critical temperature, etc., for the fuel and for the oxidizer),
which enter at different points in the analysis.

1. General Method

The general method applied in this study is as follows. First,
a set of parameters defining a mission and a gross mass is chosen:
AV, Qfo, I 1{0, MG° Next, the payload capability corresponding to
this set is determined for each propellant combination listed in Sec-
tion IA.
From AV, Isp and MG’

quired for the terminal maneuver is determined. From the O/F ratio,

the mass of useful propellant, MP’ re-

the useful masses of fuel, MF, and of oxidizer, are found.

MOX’
From MF’ MOX’ 1 2’0, 2’0, the thermodynamic properties of the
fuel, and considerations leading to the best thermal protection system,
the (spherical) tank diameters, DF and DOX’ mass of insulation, MINS’
if any, and the boll-off losses, MBO”if any, are calculated, as well
as the mass of the tanks and expulsion system, MTX' Also, the upper

stage dimensions are approximated.

We have considered a terminal thrust-to-earth-weight ratio equal

to unity. Thus, the thrust is determined from MG. The engine weight,

Qethur O Little, Ine.
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ME, is found to depend, to first order, only on thrust, hence, only

on MGO

From Isp’ O/F, and the thrust, the mass flow rates of the fuel and
oxidizer are found; in conjunction with the densities of these constit-
uents, this permits a calculation of the mass of the turbopump assembly,
Myp-

A maximum boost acceleration of 8 g, and a maximum lateral accel-
eration of 2 g, have been assumed consistently. This, together with
the values of the component masses, their distribution in the stage,
and the various dimensions found, allows the mass of the structure,

M to be calculated.

STR’

Once the masses discussed above are found, the residual available

mass is found by subtracting from MC the sum of all the others: MP,

MINS’ MBO’ MTX’ ME’ MTPA’ and MSTR' This difference will be called the

payload MPL’ and will, of course, include any electronic equipment,
such as guidance.

2. Parametric Study

We have applied the general method just outlined to a number of
missions defined by combinations of the parameters AV, 17 o’ and
MC’ wherein each of these was varied over an interesting range of
values. For each set, the payload was calculated for each of the seven
propellant combinations.

The parametric study has a three-fold purpose. First, it allows
the coverage of a wide range of interesting cases. Second, it shows

the effect of changes in one parameter with the others fixed, Third,

Aethur D Little, Ine.
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it permits interpolation when a specific mission is being considered
involving intermediate values of the parameters.

In this parametric study, only non-vented storage was considered.
Also, no special account was taken of heat inleakage through certain
small fixed conductive paths and heat sources. These limitations were
imposed only by restrictions to the scope and effort of the program.

The ranges of the parameters have been selected to exclude most cases
where the effect of the fixed heat leaks cannot be neglected (e.g., small
vehicles sent on missions of long duration).

3. Study of Specific Missions

A study of six specific missions was made. Four of these involved
capture in a 300-nautical-mile circular orbit around the planets Mercury,
Venus, Mars, and Jupiter. One mission is a solar probe involving trans-
fer to a permanent circular orbit around the sun at a radius of 0.3
astronomical unit. The other mission involves a direct landing on the
moon.,

In the study of these missions, both vented and non-vented cryogenic
storage were considered. Account was also taken of all sources of heat
inleakage.

For each mission, three values of MG were considered. The values

of AV, 14 o’ and Y o were calculated for representative cases, i.e.,
those cited in contemporary analyses of unmanned missions, and projected
for reasonable departure dates,

4, Special Missions

We have also considered two situations in which the manner of

Qethur D Little, Inc.
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accounting for the stage components deviates from the ordinary case.
The corresponding missions were chosen so that the deviations lead to
the most significant changes in the resulting payload.

The first situation is that where the structure has been designed
so that an appreciable fraction of it can be jettisoned just before the
terminal maneuver. This results in reduced propellant requirements and
accompanying changes in the masses of tankage, structure, etc. At a
fixed MG, the result is an increase in payload.

The second situation is that in which the stage escapes from earth
after having been active previously, so that the tanks are only partly
full, (or, conversely, the tanks are much larger than necessary). This
results in a larger vehicle, with increased masses of tanks, insulation,
structure, etc., and a consequent decrease in payload at fixed MG'

The overall effect can be fully assessed only if account is taken of
the performance of previous stages, which is beyond the scope of the
present study.
B. PROPERTIES

Table I lists some physical properties of the propellants that
are introduced into our evaluations to an accuracy adequate for our
purposes.,

Figure 2 illustrates the internal energy change of the saturated
liquid cryogenic propellants vs. pressure. These relationships are
used in the determination of insulation requirements in cases of non-
vented cryogenic storage as discussed in a succeeding section. The

portion of the curves shown dotted indicate extrapolation of available

measured data.
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C. INSULATION REQUIREMENTS

The problem is to define an optimum thermal protection system for
the cryogenic tankage that will limit the loss of cryogen after launch
and that will withstand all the rigors of environment during the entire
mission profile. The optimum thermal protection system would be one
which will perform reliably and introduce a minimum weight penalty.

The weight penalty associated with the thermal protection system
includes the weight of all components necessary for thermal conditioning
that are carried into space and the weight of unavailable cryogen that
is lost through venting and outage. In general, there is an additional
penalty which is the increase in weight of the tank and expulsion system
and structure sized to handle the propellant fraction that is lost
through venting and to carry the weight of insulation.

There are two basic classes of thermal insulation systems which are
considered, hereinafter referred to as Class A and Class B systems.

Both of these systems use a multifoil, evacuated, radiation-shield type
of configuration to minimize heat leaks during the stay time in space.
The Class A system makes use of a light weight vacuum type encapsulation
(say a Mylar bag) which allows for the maintenance of an acceptable
vacuum during ground-hold and boost-out. In such a system, as long as
the vacuum integrity of the bag is preserved, the heat inleakage to the
hydrogen vessel can be maintained within acceptable limits during these
portions of the mission. On the other hand, the Class B system uses a
plastic foam (cork, plastic honeycomb, or equivalent) to limit the heat

leakage during ground-hold and boost-out. 1In the Class B system the

12
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multifoil insulation is applied directly on top of the foam and is pur-
ged with helium to prevent contamination with the condensible gas con-
stituents of air, and this part of the system provides only a small mar-
gin of thermal protection until it becomes evacuated in space. The
Class A system may be regarded as a least weight configuration, but the
efficacy of a vacuum-tight vacuum bag is questionable.

In both these systems, the multifoil component of the insulation
system is determined by the space storage requirement. Weight optimi-
zation of this component for a vented system depends on the mission.

For the simple firing schedule required to satisfy the missions forming
the basis of this study, its weight should be made very nearly equal to
the loss of cryogen due heat inleakage through the multifoil blanket
divided by mass of the vehicle before and after the terminal maneuver,
To this figure we must add the weight of the plastic foam (or its equi-
valent) and the insulation retention system for the Class B system and
the weight of the encapsulating and insulation retention systems for
the Class A type.

We have specified a reasonable limit to heat inleakage during
ground-hold of 100 Btu/hr-ftzo To meet this requirement in the case of
the Class B system, we assume a thickness of reinforced foam of 5 pound
density directly to the tank wall., The thickness is re
case of each cryogen to limit the heat inleakage to the 100 Btu/hr-ft2
figure with an ambient of 5400R and an external heat transfer coeffic-
ient equal to 1 Btu/hr—ftz-oR. This foam layer is carried into space

although it provides comparatively little thermal protection during

13
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space operations.

In the case of the Class A system, the evacuated multifoil insu-
lation, even though loaded with a one atmosphere pressure at the ground,
will limit the heat leak to values below 100 Btu/hr-ftz.

During boost-out the multifoil insulation layers are restrained by
supporting nets (we have used vinyl covered fiberglass nets for the pur-
pose in ground based applications) to withstand 'g" loads, vibrations,
and decompression forces. A small fixed weight penalty per unit of
tank wall area has been applied to account for this support requirement.
Protection from aerodynamic loads during boost-out are provided by the
external shroud of the propulsion module. Decompression forces atten-
dant to the boost-out phase for the ground-purged Class B multifoil
layers are limited by perforation and/or controlled evacuation of the
space within the shroud. The temperature pulse resulting from aero-
dynamic heating of the shroud during the boost phase may require special
thermal protection features to prevent over heating of the multifoil
layers (1 )f Aluminized Mylar foil superinsulation has less tolerance
in this regard than the aluminum foil types. Nevertheless, in either
case, the thermal protective features, if any, that may be required
should not introduce a weight penalty significant to our comparative
analiyses.

During the coast period in space the heat inleakage to the cryo-
genic propellant tanks is limited by the application of the multifoil

radiation shield type of insulation and by the careful design of heat

resistant paths introduced by penetrations through the multifoil blanket

* Numbers in parenthesis refer to references listed at end of report.

14
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necessary for support, pipe connections, etc.

The heat inleakage through the multifoil system is calculated by
treating it as a blanket with heat transport characteristics in a
direction normal to the tank wall that are dominated by thermal radia-
tion effects and parallel to the tank wall by solid conduction. The
total heat influx in such a system reduces to the black body emission
from the outermost shield of the multifoil layer divided by a shielding
factor. This shielding factor depends on the thermal properties of the
shield and spacer combination making up insulation, and is very nearly
proportional to the number of shields. As a consequence, the weight
of the multifoil insulation per unit of area is also proportional to
the shielding factor. Values for the shielding factor and weight per
unit shielding factor are established from test results on the best
multifoil insulations presently available (2 ).

Irrespective of the fact that the temperature of the outermost
shield varies widely from location to location (i.e., from the sunlit
side to the shady side), it is valid to treat the outermost shield as
an isothermal surface equal to the adiabatic wall temperature. The
adiabatic wall temperature is computed from a heat balance applied to
the outermost spherical shield; the balance being achieved between the
absorbed radiant thermal energy from external sources and that re-
radiated to the space environment. For the missions projected in this
investigation, sunlight is the dominant external source; therefore,

the total heat inleakage to the tank through the insulating blanket

is made proportional to the time averaged solar intensity times the

15
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coast period. We assume the outermost shield is coated to have a ratio
of solar absorptivity to emissivity at its operating temperature of 0.3.

In effect, we treat the cryogenic tanks as if they were exposed to
the space environment; in fact, they are enclosed within a nearly cy-
lindrical envelope formed by the external shroud, the payload and
engine. From a heat inleakage standpoint this enclosure is partly
helpful (the shroud) and partly harmful (the near room temperature con-
ditioned payload and perhaps the engine) and their combined effect is
assumed to cancel. Finally, we have degraded the thermal performance
of the blanket by 20 percent from the ideal performance obtained from
measured data on carefully prepared samples to account for seams and
discontinuity made necessary by application.

The heat inleakage via solid conduction through penetrations is
based on the analysis of "weak thermal shorts' described in Reference
3 . In the case of a weak thermal short the interaction between the
penetrations and surrounding multifoil insulation is small and total
heat inleakage can be estimated quite accurately by superposition.

The heat leak due penetrations is calculated on the basis of
solid conduction via the cryogenic tank support. This support is
assumed to be made of titanium tension members one foot long with
sufficient cross section to support the propellant tank under an § g
load. The temperature at one terminal is the temperature of the stored
cryogen; the temperature of the other terminal is the time-averaged
temperature of the shroud. The time-averaged temperature of the shroud

is determined by assuming an isothermal cylindrical surface having an

16
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absorptivity to emissivity ratio of 0.3 in heat balance with the sun
shining normal to its axis and reradiating to the star-speckled sky.

The heat inleakage calculated on the basis described above is then mul-
tiplied by four, by way of introducing a factor to account for uncer-
tainties and additional heat leaks due other penetrations such as pipes.
In this way, we introduce heat inleakage to storage which is proportional
to the amount of propellant stored and independent of the amount of
multifoil insulation which may be applied.

Finally, we introduce a fixed amount of heat leak to each cryogenic
tank equal to 4 Btu/hr to account for such things as instrumentation and
in order to insert a factor consistent with experience which indicates
a practical limit for heat inleakage for cryogenic tanks of the size of
interest to this study.

In the case of the earth storable propellants, we assume no
weight penalty for thermal protective means although it is clear that
measures must be incorporated which prevent these propellants from
freezing in some instances or exceeding storage tank pressure limits

in others.

D. SPACE STORAGE OF CRYOGENIC PROPELLANTS

The long-term storage of cryogenic propellants in space depends
on the use of highly-effective thermal insulation systems and, in
some cases, auxiliary refrigerators. The requirements for fool-proof
operation will favor the use of passive thermal protection methods,
but reliable refrigerators can be developed should the savings in

weight accompanying their use be sufficient to warrant their application.

17
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The designer of the thermal protection system for cryogenic
propellant tankage has several methods for preserving the propellant
for the required storage period and each must be evaluated for its
suitability in the application of his concern. For the storage of
quantities measured in hundreds of pounds or more, the basic options
reduce to: 1) storage at low pressure in a vented tank; 2) storage at
low, variable pressure in a non-vented tank; 3) combinations of 1) and
2); and 4) storage making use of auxiliary refrigerators. A plurality
of restraints imposed by a particular mission may dictate the selection
of one of these methods, but a most common criterion for the choice is
minimum total system weight.

In the vented system the heat inleakage to the stored cryogen re-
sults in boil-off losses. These losses reduce the propellant available
after a coast period and require a storage and expulsion system and
rocket structure made somewhat larger to accommodate the propellant
which is eventually lost through venting. The boil-off losses can be
reduced by adding insulation to the propellant tanks but a weight pen-
alty is associated with this insulation and a portion of the heat in-
leakage due to penetrations for structural supports, pipes, and instru-
mentation is relatively insensitive to the thickness of the tank in-
sulating blanket. As might be imagined an optimum exists where the
weight penalty associated with propellant loss and insulation is mini-
mized. For the characteristic missions of this study and where the
propellant loss can be controlled within tolerable limits, thereby

making the use of cryogenic propellants feasible, it can be shown

18
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that the highly effective evacuated multifoil insulation should be
applied in an amount nearly equal to the weight of that portion of the
propellant lost due to heat inleakage exclusive of penetrations divided
by the mass of the vehicle before and after the terminal maneuver. Our
calculations pertaining to vented storage are based on insulating
systems which conform to this optimum; further, they reflect the weight
penalties, tankage, expulsion system, and structure which result from
the loss of propellant from storage and the weight of the applied in-
sulation. In all cases the cryogenic propellant is assumed to be stored
in space under saturated conditions at 15 psia.

In a non-vented storage system the heat inleakage to the stored
cryogen increases its internal energy. As shown in Figure 2, there is
a rise in pressure within the storage tanks commensurate with the in-
crease in internal energy. To the degree possible insulation is applied
in amounts sufficient to retain the cryogen without exceeding the pressure
limits of the storage container. By making the tank stronger (and
heavier) a lesser weight of insulation is required to preserve the
storage. Again, an optimum combination of tank wall thickness and in-
sulation thickness exists for minimum overall weight penalty. However,
for most of the cases of interest in this study, this optimum is aca-
demic for it projects tank wall thicknesses less than those which are
practical from the standpoint of fabricating leak-tight vessels.
Therefore, in this study a minimum wall thickness requirement is im-
posed (.010 inch of Titanium alloy 5AL-2.58N) and the tank is allowed

to pressurize to within 20 psi of a safe operating pressure. The 20 psi

19
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margin is for expulsion gas pressurization for turbopump NPSH. 1In cal-
culating the safe operating pressure, advantage is taken of the increased
strength properties of titanium at low temperatures. In other words the
allowable stress limits are varied depending on the temperature of the
stored cryogen. In addition, the demsity change accompanying the pres-
sure increase during the storage period for each cryogen, as well as
ullage and outage requirements, are accounted for in sizing the storage
vessels.

The start condition for the non-vented space storage period has
been assumed to be 10 Btu per pound above the triple point condition for
each cryogen in order to provide a margin for heat inleakage during
boost-out and earth orbit. Also, in calculating the allowable heat
capacity of the stored cryogens, we have assumed a well stirred, iso-
thermal fluid. To meet this requirement will probably require auxiliary
stirrers installed within the storage tanks. The weight penalty for
these should be small and has been neglected.

In comparing the weight penalties of non-vented vs. vented storage
means we note that shorter storage periods and larger cryogenic tankage
favor the non-vented means and vice versa., Actually where the use of
the vented storage means alone shows to advantage, one can demonstrate
that a period of non-vented storage followed by a period of vented
storage results in a lesser weight penalty. Although combination
storage would be appropriate to some of the cases investigated, the
limited scope of our investigations prevented parametric investigation

of combined storage means.

20
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The use of a refrigerator can result in a least weight storage
system for the preservation of cryogenic propellants in space for long
periods. Where the use of a refrigerator becomes appropriate depends
basically on the type and amount of stored propellant and the mission.
Where appropriate, optimum combinations of insulation and refrigeration

are to be used. An electric power source having a capacity measured in

hundreds or thousands of watts and a radiator for heat rejection from
the refrigerator must be on board to supply the refrigerator. Figure 3
shows estimated weights of a space-borne refrigeration system for recon-
densing selected cryogenic propellants. This figure results from studies
we have made of this problem. Reference 4 1is an example of one.
The weight of the refrigerator system as illustrated includes the power
supply, power conditioning equipment, and space radiator estimated to
yeigh a total of 0.1 pound per watt of power demand. Refrigerators to
meet the requirements of long reliable operation, small size and weight,
and high efficiency demanded of this application are not now available,
However, developments in space-borne refrigerators in progress give
promise of meeting these needs.

In general, refrigeration shows a weight advantage first in the
preservation of liquid hydrogen over the other cryogenic propellants.
As a rule of thumb, we may say that refrigeration of the main propellants
can be considered when the storage period exceeds one year. This
rule is very approximate; methods have been developed )
whereby the potential advantages of applying refrigerators can be more

precisely quantified. 1In this study, the parametric evaluation of the
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constituents, MF and M

application of refrigerators has not been carried out. Rather, we can
interpret the results of this investigation in the light of these prior
studies and infer where the application of refrigerators should be con-
sidered.

E. STRUCTURAL REQUIREMENTS

The configuration of the stage that we have adopted as a basis for
analysis was shown in Figure 1. Its main dimensions are determined by
the tank diameters. The latter depend on the masses of the propellant
ox” The loads applied to the structural members
depend on the distribution of the masses. Therefore, once the various
masses have been determined, it is possible to estimate the masses of
the structural components and, hence, the total structural mass MSTR°

The manner in which MSTR is determined can be described with the
use of Figure 4. The structure consists of an aluminum structural
shell divided into three sections. Each of Sections I and II is cy-
lindrical and of uniform strength throughout its length, and designed
for the maximum bending load combined with the (constant) thrust load
imposed on that Section. Section III is conical, but is assumed for
analytical simplicity to be a cylinder having the same length as the
cone but half the radius of the main shell.

The masses of the various structural sections are calculated
using a procedure outlined by Sandorff ( 6)0 For any cylindrical
section under axial compressive thrust, T, a strength modulus require-

ment, T/ﬂRZ, is calculated. A curve (Figure 2 in Sandorff) gives the

product "equivalent shell thickness" times density over shell radius
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as a function of the thrust modulus, for structural shells stiffened
with stringers and rings. Since the length and radius of the shell

are known, the mass of the section for thrust is easily obtained. A
similar procedure (based on Figure 1 in Sandorff) can be followed,
using a moment modulus 2M/ﬂR3, to obtain the mass of the section to
support a moment, The two masses are added., When the masses of all
three sections are known, they are added to form a first estimate of
structural mass. Finally, a 25 percent increase in this first estimate
is added to account for local reinforcements and structural additions
for tankage and expulsion systems support.

1. Loading During Boost

Section I must accelerate the payload to 8 g in the axial
direction and give structural support to a 2 g lateral load (a thrust
of 8 MPL and a moment of 2 MPL RF).

Section II must accelerate the payload fuel tankage and expul-

sion system plus insulation and fuel (a thrust of 8 (MPL + MFTX + M

+ M) and a moment of 2 My (2 Ry + Ryp) + 2 (Mppy + Mpoo + M)
(R.F + ROX) .

Section III is in tension and must accelerate the oxidizer,

INS

oxidizer tankage and expﬁlsion system plus insulation, engine, and
turbopump to 8 g. The moment requirements are small.

In all cases a lower limit of 0.025 inches was imposed on the
"equivalent shell thicknesses" of the three sections to give some
effect to practical minimums imposed by the stipulation of a continu-

ous shroud and needs for fabrication and handling.
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2. Loading During Terminal Thrust

For all cases considered, the thrust loads on Sections I and II
can be shown to be highest at burn-out,

For Section II, this loading is always less than that during
boost. Therefore, design for boost conditions automatically satisfies
the requirements of terminal thrust.

For Section I the terminal thrust loading at burn-out is u MPL’
where u is the stage mass ratio (ratio of stage light-off to burn-out
masses). This thrust can be greater than the maximum boost thrust
load 8 MPL since when low ISP propellants are used for missions re-
quiring high & V, u can be larger than 8. We have not taken account
of this requirement, bearing in mind the following: (a) MSTR is of

the order of 1.5 percent of MG for the low ISP propellants; (b) the

mass of Section I is less than 30 percent of M hence, less than

STR’
0.5 percent of M,; (c) these percentages decrease as u increases since
the payload mass, which is supported by Section I, decreases with in-
creasing values of u; (d) in all cases, a 25 percent weight factor has
been added to the calculated value of the weight of structure, to
account for reinforced sections; etc.; (e) the correction to MSTR

that would result is within the possible error and is a refinement
not warranted in the present study.

For Section III the terminal load is MG in compression as com-
pared with a boost tensile load of 8 (MOX + ME + MTPA + M.OTX)°

Although the latter is from two to seven times the compressive load,

Section III was designed for compression, because either (i) the shell
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thickness required by the tensile load is below the minimum thickness
and is, therefore, unrealistic; or (ii) the compressive loading cri-
terion imposes the greater weight penalty.

F. STORAGE TANKS

For purposes of weight estimation, we assume the storage tanks are
spherical vessels designed as stressed membranes. The vessels are sized
to retain the required amount of propellant to accomplish the mission in
its least dense condition (a factor, although small, in the case of a
non-vented storage) plus a 7 percent volume allowance for ullage and
outage., The tanks are assumed to be made of 5 A1-2.5SN alloy of ti-
tanium and to have a wall thickness of 0.010 inches, which thickness is
consistent with weight optimization. A 35 percent increase in weight
over the constant wall thickness design is added to account for rein-
forcements for local stresses, internal piping and slosh baffles.

In the case of non-vented storage the maximum membrane stresses
are reached at the end of the coast period. A thermal protection system
is provided to limit the internal tank pressure plus an added allowance
of 20 psi for gas pressurization to result in a design stress level that
is 80 percent of the yield stress at operating temperature.

In the case of the vented storage, maximum stress levels are
reached during boost-out and are below 80 percent of yield.

In those instances where the compatability of titanium with the
propellant is questionable, for instance, its impact sensitivity with
oxygen and fluorine, one can substitute a .025 inch thick wall of a

high strength aluminum alloy such as 2014-T6 and fulfill the strength
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requirements at an increase in dry tankage weight of approximately
50 percent.

G. EXPULSION SYSTEM

The weight of the expulsion system is comprised mainly of the
weight of the helium-filled expulsion gas bottles. We assume warm gas
storage in titanium bottles. With equal stress limits for the pro-
pellant tanks and expulsion bottles, the weight of the expulsion gas
bottles can be shown to be very nearly equal to the propellant tanks,
and this equality is assumed in our evaluations. In addition the weight
of expulsion gas is 15 percent of the expulsion gas bottles, The
weight factor, MTX’ shown in the IBM printout sheet of results presented
in Section K is the total of the weights of propellant tanks, expulsion
gas bottles and expulsion gas in ratio 100:100:15.

H. THE ENGINE

Two approaches suggest themselves in estimating the weight ME of
the engine assembly (exclusive of the turbopump assembly). 1In the first
approach, a design analysis is gone through; this analysis must be
realistic and include all elements necessary to carry out the functions
of the engine and to meet the mechanical strength and thermal (cooling)
requirements. In the second approach, use is made of information on
existing engine assemblies, with interpolation or extrapolation where
necessary.

The design of a rocket engine requires attention to a considerable
amount of detail, and, in our study, would have had to be repeated for

a large number of cases. One item, the cooling system, involves a
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choice that depends on several quantities: heat transfer rate to the
nozzle, burning time, chamber pressure. Although reliable ground work

(7)

was already available » we chose not to adopt the design approach

for the following reasons: (a) the state of the art relative to cool-
ing methods is still not firm enough to permit of generalization; (b)

the differences in ME associated with different cooling methods are

of the order of the error which can be tolerated in estimating ME.

We neglect variations in the weights of the gas generator, com-
bustion chamber, injectors and manifolds, and we assume cooling tube
walls of fixed thickness (this actually minimizes the weight of a regen-

’
erative cooling system). As a result, it is possible to find a basic
relationship between ME and the product: (chamber pressure, Pc) x (throat
area, At)' This relationship has been plotted in a report by Aerojet-
General ( 8), and is corroborated, in that points that represent exist-
ing engines fall close to the theoretical curves. We have adopted this
relationship in our estimate of ME.

The product PC At is equal, by definition, to the product of
thrust (equal in our case to MG) and the ratio: characteristic vel-
ocity c* over specific impulse, ISpo For all seven propellants con-
sidered, the ratio c*/ISp is found to vary by no more than 2.5 percent
about a mean value of 0.524., Therefore, in the relationship suggested
by Aerojet-General, ME can be considered as depending only on M_.

Note that this dependence is not affected by a choice of Pca
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1. TURBOPUMP ASSEMBLY

A procedure similar to that used for the engine is applied to
estimate the mass, MTPA’ of the turbopump assembly. We have considered
separate turbopump systems for the fuel and the oxidizer, and added the
mass of each to form MTPA'

(9)

In the Aerojet-General report , the mass of turbopump systems
is plotted against the ratio: mass flow rate over (propellant den-
sity)o's. The total mass flow rate of propellant is simply the thrust
divided by Isp; and again the thrust equals MG' Therefore, the total
mass flow rate can be found. Then, from a knowledge of the O/F ratio,
the mass flow rate of each constituent jis calculated. Using a mean
density for the fuel and one for the oxidizer (employing the proper
units as called for in reference 9 ), raising these values to the

power 0.8, and dividing the results into the respective mass flow rates,
one obtains values with which to determine the weight of the turbopump

systems.

J. SPECIAL CASES

In this section we will consider two situations in which the events
in a trip to space depart in some way from the standard sequence adopted
throughout the remainder of the report. In the first of these situations,
part of the structural shell is jettisoned just before the terminal man-
euver. The second situation involves an upper stage that has escaped
from earth with propellant tanks only partially full,

1. Jettisoning of Structure

From the discussion in Section E, Structural Requirements, it is
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clear that the mass of Section II of the structure is governed by the
maximum thrust imposed during boost. 1In fact, the terminal load on
Section II is so small compared to the boost load (plus moment) that it
(the terminal load) could be transmitted by some light-weight internal
strut arrangement, This suggests that a large fraction of Section II,

which accounts for about 60 percent of M

STR? might be jettisoned before

the terminal maneuver. This procedure will always lead to increased
payload for a given MG’ but will produce a particularly significant
effect, and, hence, will be most worthwhile, on missions involving a
small payload fraction (large mass ratio u).

Suppose that a fraction of of the mass of structure, or & MSTR’
is jettisoned just before the terminal maneuver. Then the light-off
mass will be M, - o MSTR instead of M,. The required amount of pro-

G G

, 1 . 1
pellant will be (MC 4 MSTR) (1 " ) instead of MG (1 5 ). There

fore, since the vehicle escapes from earth with a fixed mass M., and
need carry less propellant, the gain can be transferred directly to in-
creasing the payload. This increase is MSTR (L - 1/u). Of course,
we have not considered changes in stage mass due to changes in the

tank sizes, boil-off, insulation, etc.; these are of second order im-

portance.

2. Earth Escape with a Fraction of the

Propellant Previously Utilized

Consider a space vehicle entering an interplanetary orbit on a
given mission, but with its tanks only partially filled with liquid.
This situation could be the result of several possible circumstances,

but in the present discussion the missing propellant is considered as
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having been used during the earth-escape maneuver.

The use of the upper stage, in lieu of the heavier second-to-last
stage, to contain propellant for completing earth escape, will undoubt-
edly result in an increase in payload-to-launch weight ratio., However,
since the determination of that effect is beyond the scope of the present
analysis, we treat here only the performance of the upper stége; this
information can later be used to evaluate total system performance.

As a basis for analysis, we consider an upper-stage vehicle designed
for a given value of gross mass and a given mission, using a given pro-
pellant with vented storage. Specification of the mission and propellant
implies the specification of the mass ratio u and the amount of pro-
pellant required for the mission with full tanks. Also implied are the
masses of all elements in the vehicle, based on full tanks at earth
escape; this includes the payload MfL and MBO'

If we now decrease the mass of propellant MP at earth escape, MPL
must decrease. The relationship between these two masses is simple for
the case of vented storage of propellants: the amount of boil-off is
unchanged. The mass ratio u may then be expressed as unity plus the
ratio MP/(MPL + MfIXED)’ where the last term in brackets represents
the total fixed mass of the vehicle elements. Since u is specified
for a given mission, so is the above ratio; moreover its value is
given (equal to u-1). This is the relation between MP and MPL

that we shall use.
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Since we are considering an upper stage vehicle designed for a
given value of gross mass, and since all elements except the payload
retain their respective masses before any of the propellant is used,
the gross mass will be less than the design value by the decrease in
MPL' The vehicle mass at earth escape will equal the reduced gross
mass less the amount of propellant used before earth escape. The
ratio of these two quantities (reduced gross mass divided by the
earth escape mass) is the mass ratio associated with the maneuver
in which the missing propellant was used., This mass ratio, together
with 1Sp for the propellant in question, determines the velocity in-

crement A Ve given the upper stage during the earth-escape maneuver.
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K. RESULTS

1. Nomenclature

For convenience of interpretation, the nomenclature used in our

evaluations as illustrated in the IBM printout of results is repeated.

ISP - specific impulse

ITO - average solar intensity times stay time in space

M BO - total mass of propellant lost due boil-off (vented
storage)

M ENG - mass of engine

M INS - total mass of insulation on cryogenic propellant tanks
A - Class A
B - Class B

M PAY - mass of payload

M PU - total mass of propellant used in terminal maneuver

M PRO - total mass of propellant at escape from earth orbit

M STR - mass of support structure

M TPA - méss of propellant turbopump assemblies

MTX - total mass of propellant tankage and expulsion system

TO - stay time in space (coast period)

2. Parametric Evaluations

Tables IIA, IIB, and IIC summarize the results of parametric
evaluations. The use of high energy cryogenic propellants show a
payload advantage in all cases covered in the parametric matrix except
possibly for the hydrogen-oxygen combination in small gross weight
vehicles in missions with a terminal maneuver calling for a high velo-

city increment. The relatively high specific impulse of the hydrogen-
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oxygen combination and its attendant potential payload advantage is com-
promised by the need for bulky hydrogen tankage leading to increased
weight penalties for insulation, expulsion system and structure. The
use of the hydrogen-fluorine combination shows the highest potential
transport capability in all cases except one with the diborane-oxygen
difluoride combination next in rank order.

In interpreting these results it must be noted that they cover
cases only where the total heat inleakage through the insulating blanket
dominates other sources. In possible cases of interest involving long
coast periods and small propellant quantities particularly, this con-
dition may be violated, This limitation has been removed in the eval-
uation of specific missions and the result can have a marked influence
as shown in the succeeding paragraphs.

3. Specific Missions

Tables III through VIII and Tables IX through XIV summarize the
results of calculations giving payload estimates for specific missions
using non-vented and vented propellant storage methods, respectively.
The resulting payload estimates are illustrated in the bar charts of
Figures 5 through 10.

We note that, in general, the high energy cryogenic propellants

show greater transport capabilities than the earth storable propellants.

The use of either the hydrogen-fluorine and diborane-oxygen difluoride
combinations results in the greatest payload in every case. The appli-
cation of the fully mixed, non-vented method of storage results in the

greatest payload in all cases except one.
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In a number of cases for the Jupiter mission, heat inleakages via
paths not controlled by the insulation blanket lead to pressure in-
creases in the non-vented cryogenic propellant storage containers greater
than the limits set, In these cases we might expect to be able to
transport measurable payloads (particularly for the larger vehicles)
by designing the vehicle expressly for the mission; that is, taking
special pains to reduced fixed heat leaks, increasing the pressure
capabilities of the storage tanks, etc. Similarly, by tailored vehicle
design, the payload potentials resulting from the use of vented storage
would be enhanced. Here, we have evidence of the limitations of
parametric analyses. Also, we would expect the application of re-
frigerators to increase the payloads for the Jupiter mission.

Of the cryogenic propellants, the methane-oxygen difluoride and
the diborane-oxygen difluoride combinations have physical characteristics
which result in compact vehicle design and ease the space storage
problem. Their relative advantages in these regards show up in cases
where the penalties of space storage are particularly great, for in-
stance, in the Solar and Jupiter missions. The better space storability
of diborane (oxygen difluoride) with respect to hydrogen (fluorine)
is responsible in those instances where its use shows a greater trans-
port capability.

Finally, we note the relatively poor transport capability of the
hydrogen-oxygen combinations compared to the other high energy pro-
pellants. The basic reason for this is the relatively large fuel tank-

age required. This larger tankage requires more structure, more insula-
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tion, and a greater weight of expulsion system, all of which subtract
from the payload.

4, Special Cases

a., Jettisoning of Part of the Structure

The gain in payload made possible by jettisoning a large fixed
fraction (one half) of the structure just before the terminal maneuver,
is shown in Table XV, for a solar orbit mission, This mission was
chosen because of the high mass ratio u associated with it, and the
resulting small payload ratio. It is seen that the increased payload
capability is significant, especially for propellants of low density,
giving heavy structures.

b. Earth Escape with Partially Filled Tanks

Table XVI shows the effect of using an upper stage vehicle,
designed to operate from earth escape, to perform a portion of the
earth escape maneuver. This vehicle was designed for a Mars capture,
with a gross mass at earth escape of 40,000 1lbs., with full H2/F2
tanks (see Table XIII).

The independent variable chosen is the amount of propellant, MP’
remaining after the earth escape maneuver, The other three variables
shown in Table XVI are functions of MP' The payload, MPL’ of course,
decreases as MP decreases, since the Mars capture maneuver, with
H2/F2,involves a fixed mass ratio. For the same reason, a non-zero

amount of propellant would be required even if the payload were zero.

The actual gross mass, decreases by the same amount

as does MPL°

Ms (acTuaL)®
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TABLE XV

GAIN IN PAYLOAD BY JETTISONING PART OF THE STRUCTURE

Mission: Solar Orbit

MC: 40,000 1b.

Aav: 35,700 ft/sec.

o(: 0.5 (extreme case - half the

structure mass jettisoned)

Insulation: Class A (non-vented storage)

Original New
Propellant Isp (sec) 11_ L(1- % ) MSTR aMy, MPL _Mll
H, - 0, 440 12.4 460 1075 495 383 878
Hy, - F, 459 11.2  .455 605 275 1654 1929
CH, - OF, 410 15.0  .466 361 168 1501 1669
H, - OF, 450 11.8  .458 814 373 1097 1470
N H, - N,0, 333 28.0  .481 530 256 154 410
A50 - N0, 332 28.1  .482 447 216 233 449
B Ho - OF, 429 13.3  .462 464 217 1723 1940
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TABLE XVI

PAYLOAD TO MARS, ACTUAL GROSS MASS (FULL TANKS)
AND VELOCITY INCREMENT AVAILABLE FOR EARTH ESCAPE
VS. PROPELLANT MASS LEFT IN TANKS AT EARTH ESCAPE

|+

19,053
15,023
10,023

4,953

3,853

Design gross mass: 40,000 1bs.
Propellant: HZ/FZ
AV (Mars Capture): 8,640 ft/sec.

Vented Storage, Class A Insulation

Masses in lb.m.

Mo M (acTuav)
19,105 40,000
14,038 34,933

7,728 28,623

1,397 22,292

0 20,895
60

4;Ve(ft/sec)

1,800
5,600
14,700

19,200
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The velocity increment, & Ve’ available for the earth escape
maneuver, becomes appreciable only when MPL has been greatly reduced.
However, even such reduced payloads may be interesting. Finally, for
the design gross mass chosen, an upper stage vehicle weighing about
22,000 lbs., could, with some help (an additional &2V of about 4,000
ft/sec), escape from an earth parking orbit and deliver about 1,000

1bs. of payload to capture around Mars.
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